Predictor feedback models for stick balancing with delay mismatch and sensory dead zones

Author:

Nagy Dalma J.1ORCID,Insperger Tamás1ORCID

Affiliation:

1. Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

Abstract

Human stick balancing is investigated in terms of reaction time delay and sensory dead zones for position and velocity perception using a special combination of delayed state feedback and mismatched predictor feedback as a control model. The corresponding mathematical model is a delay-differential equation with event-driven switching in the control action. Due to the sensory dead zones, initial conditions of the actual state cannot always be provided for an internal-model-based prediction, which indicates that (1) perfect prediction is not possible and (2) the delay in the switching condition cannot be compensated. The imperfection of the predictor is described by the delay mismatch, which is treated as a lumped parameter that creates a transition between perfect predictor feedback (zero delay mismatch) and delayed state feedback (mismatch equal to switching delay). The maximum admissible switching delay (critical delay) is determined numerically based on a practical stabilizability concept. This critical delay is compared to a realistic reference value of 230 ms in order to assess the possible regions of the threshold values for position and velocity perception. The ratio of the angular position and angular velocity for 44 successful balancing trials by 8 human subjects was used to validate the numerical results. Comparison of actual human stick balancing data and numerical simulations based on the mismatched predictor feedback model provided a plausible range of parameters: position detection threshold 1°, velocity detection threshold between 4.24 and 9.35°/s, and delay mismatch around 100–150 ms.

Funder

National Research, Development and Innovation Office

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Critical Length is a Good Measure to Distinguish between Stick Balancing in the ML and AP Directions;Periodica Polytechnica Mechanical Engineering;2023-11-09

2. Beyond the Bristol book: Advances and perspectives in non-smooth dynamics and applications;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3