Affiliation:
1. Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester M1 5GD, UK
2. School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
Abstract
Regulation by negative feedback is fundamental to engineering and biological processes. Biological regulation is usually explained using continuous feedback models from both classical and modern control theory. An alternative control paradigm, intermittent control, has also been suggested as a model for biological control systems, particularly those involving the central nervous system. However, at present, there is no identification method explicitly formulated to distinguish intermittent from continuous control; here, we present such a method. The identification experiment uses a special paired-step set-point sequence. The corresponding data analysis use a conventional ARMA model to relate a theoretically derived equivalent set-point to control signal; the novelty lies in sequentially and iteratively adjusting the timing of the steps of this equivalent set-point to optimize the linear time-invariant fit. The method was verified using realistic simulation data and was found to robustly distinguish not only between continuous and intermittent control but also between event-driven intermittent and clock-driven intermittent control. When applied to human pursuit tracking, event-driven intermittent control was identified, with an intermittent interval of 260–310 ms (
n
= 6,
p
< 0.05). This new identification method is applicable for machine and biological applications.
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献