Affiliation:
1. University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University , Shanghai 200240, China
Abstract
The demand for applications, such as coatings, separation filters, and electronic packaging, has greatly driven the research of polymer films. At nanometer scale, mechanical properties of thin polymer films can significantly deviate from bulk. Despite outstanding progresses, there still lack deep discussions on nonlinear viscoelastic–viscoplastic response and their interactions under nanoconfinement. In this work, by conducting measurements via the bubble inflation method and modelling using Schapery and Perzyna equations, we demonstrate nonlinear viscoelastic–viscoplastic properties of freely standing thin polystyrene (PS) films. The results show the unchanged glassy compliance and the rubbery stiffening phenomenon for thin PS films, where the lower rubbery plateau in rubbery stiffening may originate from the induced molecular orientation by plastic deformation. With decreasing film thickness, viscosity and yield stress in viscoplasticity increase in an exponential and a linear trend, respectively, indicating the significant role of nanoconfinement effect on viscoplastic properties. These findings may reveal that there are many properties from linear viscoelasticity to nonlinear viscoelasticity–viscoplasticity that need to be explored and unveiled for sufficient understanding of the nanoconfinement effect on altering mechanical behavior of polymers.
Funder
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献