Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells

Author:

Peng Jun1ORCID,Walter Daniel1ORCID,Ren Yuhao2ORCID,Tebyetekerwa Mike1ORCID,Wu Yiliang1ORCID,Duong The1ORCID,Lin Qiaoling2ORCID,Li Juntao2ORCID,Lu Teng3ORCID,Mahmud Md Arafat1ORCID,Lem Olivier Lee Cheong4,Zhao Shenyou1ORCID,Liu Wenzhu5,Liu Yun3ORCID,Shen Heping1ORCID,Li Li4ORCID,Kremer Felipe6ORCID,Nguyen Hieu T.1ORCID,Choi Duk-Yong7ORCID,Weber Klaus J.1ORCID,Catchpole Kylie R.1ORCID,White Thomas P.1ORCID

Affiliation:

1. Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra Australian Capital Territory 2600, Australia.

2. State Key Laboratory of Optoelectronics Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China.

3. Reseach School of Chemistry, The Australian National University, Canberra Australian Capital Territory 2600, Australia.

4. Australian National Fabrication Facility, Research School of Physics, The Australian National University, Canberra Australian Capital Territory 2600, Australia.

5. Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Jiading, Shanghai 201800, China.

6. Centre for Advanced Microscopy, The Australian National University, Canberra Australian Capital Territory 2600, Australia.

7. Australian National Fabrication Facility, The Australian National University, Canberra Australian Capital Territory 2600, Australia.

Abstract

Opening charge transport pathways In perovskite solar cells, the insulating nature of passivation layers needed to boost open-circuit voltage also increases the series resistance of the cell and limits the fill factor. Most improvements in power conversion efficiency have come from higher open-circuit voltage, with most fill factor improvements reported for very small-area cells. Peng et al. used a nanostructured titanium oxide electron transport layer to boost the fill factor of larger-area cells (1 square centimeter) to 0.84 by creating local regions with high conductivity. Science , this issue p. 390

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3