Relaxation and entropy generation in dewetting thin glassy polymer films trapped far from equilibrium

Author:

Madhusudanan Mithun1,Chowdhury Mithun12

Affiliation:

1. Lab of Soft Interfaces, Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Mumbai India

2. Centre for Research in Nano Technology and Science Indian Institute of Technology Bombay Mumbai India

Abstract

AbstractPolymers when confined to a dimension comparable to the length scale of polymer chain coils such as thin films, often lead to molecular relaxation processes distinct from their bulk counterpart. Often observed as thermal and mechanical responses such relaxation has been frequently associated with the squeezing of polymer chains having conformations trapped far from thermodynamic equilibrium and subsequently generating processing‐induced molecular recoiling stress. Relaxation in polymer films can be modified by tuning the molecular recoiling stress, which is directly influenced by the preparation conditions of the polymer thin films. Hence a comprehensive understanding of the genesis and relaxation of molecular recoiling stress becomes necessary. Here, we provide insights into the nonequilibrium nature observed in polymer thin films, focusing majorly on the investigations into the molecular recoiling stress using the dewetting technique. The impact of various factors like temperature of dewetting, thickness of films, molecular weight of polymers, and physical aging affecting the relaxation of molecular recoiling stress is discussed. In addition, discussions on the possible mechanisms of relaxation and modification of molecular recoiling stress by varying the spin‐coating speed and addition of plasticizers are also provided. An alternate approach which gives a new perspective into the relaxation of molecular recoiling stress considering the entropy generated during the dewetting of polymer films is also included. The present work is expected to give the reader a comprehensive understanding of the characteristics of molecular recoiling stress relaxation occurring in polymer thin films.

Funder

Science and Engineering Research Board

Industrial Research and Consultancy Centre

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3