3.3 kV-class NiO/β-Ga2O3 heterojunction diode and its off-state leakage mechanism

Author:

Wan Jiangbin1ORCID,Wang Hengyu1ORCID,Zhang Chi1ORCID,Li Yanjun1ORCID,Wang Ce1ORCID,Cheng Haoyuan1ORCID,Li Junze1ORCID,Ren Na1ORCID,Guo Qing1ORCID,Sheng Kuang1ORCID

Affiliation:

1. College of Electrical Engineering, Zhejiang University , Hangzhou 310027, China

Abstract

This Letter demonstrates a high-performance 3.3 kV-class β-Ga2O3 vertical heterojunction diode (HJD) along with an investigation into its off-state leakage mechanism. The vertical β-Ga2O3 HJD with field plate assisted deep mesa (FPDM) termination was fabricated using a self-aligned technique to etch the deep mesa to a depth of 9 μm, thereby reducing electric field crowding at the anode edge. In addition, a thick dielectric is deposited to fill the trench, facilitating the utilization of a field plate to further reduce the electric field at the anode edge. TCAD (Technology Computer Aided Design) simulations show significant suppression of electric field crowding at the anode edge. The fabricated HJD exhibits a high current swing of ∼1010 over a temperature range from 25 °C to 175 °C. The specific on-resistance (Ron,sp) is extracted to be 3.9 mΩ cm2, and the breakdown voltage is 3.42 kV with the FPDM termination. These conduction and blocking characteristics lead to a high power figure of merit of 3 GW/cm2, which is one of the highest among multi-kilovolt β-Ga2O3 diodes. Furthermore, the off-state current leakage mechanism of the HJD under a reverse bias up to 2000 V was investigated. The fitted results reveal that the leakage current is primarily dominated by Poole–Frenkel (PF) emission, with the trap level of PF extracted to be 0.36 eV below the conduction band of NiO.

Funder

National Natural Science Foundation of China

Delta Power Electronics Science and Education Develoment Program of Delta Group

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3