High mobility amorphous InSnO thin film transistors via low-temperature annealing

Author:

Hu Mengzhen1ORCID,Xu Lei1ORCID,Zhang Xinnan1,Hao Hanyuan1ORCID,Zong Shi1,Chen Haimin1,Song Zengcai1ORCID,Luo Shijun1ORCID,Zhu Zhihua1ORCID

Affiliation:

1. School of Electronic Engineering, North China University of Water Resources and Electric Power , Zhengzhou 450046, China

Abstract

In this article, we fabricated amorphous InSnO thin film transistors (TFTs) with exceedingly high mobility and low thermal budget. The device is annealed only at a low temperature of 150 °C, a field-effect mobility (μFE) of 70.53 cm2/V s, a subthreshold swing of 0.25 V/decade, an on/off current ratio over 108, and a reasonable threshold voltage shift under negative bias stress. The influence of thermal annealing on amorphous InSnO TFTs was investigated by systematically analyzing the crystallization, surface morphology, internal chemical state, and energy band relationship of the InSnO thin film. Amorphous InSnO films deposited at room temperature have a sparse and porous loose structure, which has carrier scattering caused by poor film quality, resulting in low mobility and few free carriers in the film. With the increase in the annealing temperature, the In and Sn metal cations are further oxidized, increasing the carrier concentration in the film and forming a dense M–O–M network when annealed at 150 °C. With the further increase in the annealing temperature, a large number of thermally excited free electrons make the device appear metal like conductivity. This paper expands the research on a high electron concentration InSnO material as the active layer and promotes the development of amorphous oxide semiconductors in high mobility and flexible TFTs.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical modeling for photo-capacitance characteristics of metal oxide TFTs;AIP Advances;2024-01-01

2. Effect of Indium Doping on Bias Stability in Dual-Target Co-Sputtering InZnSnO Thin-Film Transistors;IEEE Transactions on Electron Devices;2023-12

3. Effect of Sputtered Oxygen Flux on Electrical Properties of Nanometer-thin indium-tin Oxide Transistors;2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2023-07-31

4. The influence of annealing atmosphere on sputtered indium oxide thin-film transistors;Journal of Physics D: Applied Physics;2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3