Five-view three-dimensional reconstruction for ultrafast dynamic imaging of pulsed radiation sources

Author:

Gao Jianpeng12ORCID,Sheng Liang2,Wang Xinyi2,Zhang Yanhong2,Li Liang1ORCID,Duan Baojun2,Zhang Mei2ORCID,Li Yang2ORCID,Hei Dongwei2

Affiliation:

1. Department of Engineering Physics, Tsinghua University 1 , Beijing 100084, China

2. National Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology 2 , Xi’an 710024, China

Abstract

Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights into the generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of the pulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography 3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are often available for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete data may introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction method using cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. We augment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have been carried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns between adjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstruction results and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3