A repetitive 800 kA linear transformer drivers stage for Z-pinch driven fusion-fission hybrid reactor

Author:

Liang Chuan,Zhou Lin,Sun Fengju,Zeng Jiangtao,Li Mingjia,Wang Zhen,Li Zhenghong,Peng Xianjue

Abstract

AbstractThis paper presents the design and tests of a repetitive 800 kA fast linear transformer driver (LTD) stage aimed for the Z-pinch driven fusion-fission hybrid reactor (Z-FFR).The LTD stage consists of 34 parallel basic resistor R, inductor L, and capacitor C (RLC) circuits each made up of two 100 kV/40 nF capacitors, a multi-stage gas switch and Metglas magnetic cores. The stage can deliver about 800 kA current pulse with rise time of 100 ns into the matched liquid resistive load at a repetitive frequency 0.1 Hz. A novel method to trigger the stage via a continuous internal trigger bus composed by a single cable has been proposed and demonstrated. The experimental results show that the new trigger method is feasible and reliable. A 140 kV, 25 ns rising time trigger pulse, and a 5.2 kA, 30 μs width pre-magnetization current pulse which can operate at a repetition rate 0.1 Hz were used in this stage to insure the LTD stage generating a 80 kV/800 kA current pulse every 10 s. A multi-stage gas switch that has a lifetime in excess of 10,000 shots and a jitter less than 3 ns one sigma agrees well with the demand of Z-FFR. The electrical behavior of the stage can be predicted from a simple RLC circuit, which can simplify the design of various LTD-based accelerators.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3