Spin-anomalous-Hall unidirectional magnetoresistance in light-metal/ferromagnetic-metal bilayers

Author:

Huang QiKun1ORCID,Cui Xiaotian1,Wang Shun1,Xie Ronghuan1,Bai Lihui2ORCID,Tian Yufeng2ORCID,Cao Qiang1ORCID,Yan Shishen12ORCID

Affiliation:

1. Spintronics Institute, University of Jinan 1 , Jinan 250022, China

2. School of Physics, State Key Laboratory of Crystal Materials, Shandong University 2 , Jinan 250100, China

Abstract

Nonreciprocal magnetotransport is one of the central topics in spintronics because of its importance for electrically probing magnetic information. Among numerous electrical probes used to read magnetic orders, unidirectional magnetoresistance (UMR), characterized by sign changes upon reversal of either current or magnetization, is currently a matter of great interest and has been identified in various spin–orbit-coupled bilayer systems composed of an (anti)ferromagnetic layer and a nonmagnetic layer with strong spin Hall effect. A recent theoretical work predicts that a spin-anomalous-Hall (SAH) UMR in those metallic conducting bilayers can originate from the spin-anomalous-Hall effect of the ferromagnetic layer and the structural inversion asymmetry. However, this type of UMR has not been reported experimentally. Here, we give the experimental evidence of spin-anomalous-Hall UMR in the light-metal/ferromagnetic-metal Cu/Co bilayers, where the emergence of net nonequilibrium spin density is attributed to the interfacial spin leakage asymmetry due to the spin memory loss effect at the Cu/Co interface and multiple spin reflections. We also show a highly tunable UMR in the Cu/Co/CuOx trilayer by varying the Cu thickness, which is due to the competition between the orbital Rashba effect in Co/CuOx and the spin-anomalous-Hall effect in Cu/Co. Our work widens the material choice for UMR device applications and provides an alternative approach to detect in-plane magnetization without an external spin polarizer.

Funder

National Natural Science Foundation of China

Major Basic Research Project of Shandong province

Natural Science Foundation of Shandong Province

Higher Education Discipline Innovation Project

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3