Measuring arrangement and size distributions of flowing droplets in microchannels through deep learning using DropTrack

Author:

Durve Mihir1ORCID,Orsini Sibilla23,Tiribocchi Adriano3ORCID,Montessori Andrea4ORCID,Tucny Jean-Michel14ORCID,Lauricella Marco3ORCID,Camposeo Andrea2ORCID,Pisignano Dario25ORCID,Succi Sauro16ORCID

Affiliation:

1. Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT) 1 , viale Regina Elena 295, Rome 00161, Italy

2. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore 2 , Piazza San Silvestro 12, Pisa 56127, Italy

3. Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche 3 , via dei Taurini 19, Roma 00185, Italy

4. Dipartimento di Ingegneria, Università degli Studi Roma tre 4 , via Vito Volterra 62, Rome 00146, Italy

5. Dipartimento di Fisica, Università di Pisa 5 , Largo B. Pontecorvo 3, Pisa 56127, Italy

6. Department of Physics, Harvard University 6 , 17 Oxford St., Cambridge, Massachusetts 02138, USA

Abstract

In microfluidic systems, droplets undergo intricate deformations as they traverse flow-focusing junctions, posing a challenging task for accurate measurement, especially during short transit times. This study investigates the physical behavior of droplets within dense emulsions in diverse microchannel geometries, specifically focusing on the impact of varying opening angles within the primary channel and injection rates of fluid components. Employing a sophisticated droplet tracking tool based on deep-learning techniques, we analyze multiple frames from flow-focusing experiments to quantitatively characterize droplet deformation in terms of ratio between maximum width and height and propensity to form liquid with hexagonal spatial arrangement. Our findings reveal the existence of an optimal opening angle where shape deformations are minimal and hexagonal arrangement is maximal. Variations of fluid injection rates are also found to affect size and packing fraction of the emulsion in the exit channel. This paper offers insight into deformations, size, and structure of fluid emulsions relative to microchannel geometry and other flow-related parameters captured through machine learning, with potential implications for the design of microchips utilized in cellular transport and tissue engineering applications.

Funder

HORIZON EUROPE European Research Council

European Union by the Next Generation

Gruppo Nazionale per la Fisica Matematica

Publisher

AIP Publishing

Reference57 articles.

1. Droplet microfluidics;Lab Chip,2008

2. Droplet based microfluidics;Rep. Prog. Phys.,2012

3. High-throughput injection with microfluidicsusing picoinjectors;Proc. Natl. Acad. Sci. U. S. A.,2010

4. Multiple emulsions for food use;Curr. Opin. Colloid Interface Sci.,2007

5. Applications of microfluidic devices in food engineering;Food Biophys.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3