Numerical simulations to determine the size of microdroplets without visualization by measuring pressure fluctuations

Author:

Khan Babajan Bakthar1ORCID,Thamida Sunil Kumar1ORCID,Vir Anil B.1ORCID

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology Tirupati , Tirupati 517619, India

Abstract

A novel pressure-fluctuation-based method is proposed for measuring the size of microdroplets without the need for visualization through a microscope. In the present work, numerical simulations are carried out in a co-flow geometry to verify this concept. First, the droplet formation frequency is determined by applying the fast Fourier transform to measured pressure fluctuation data with respect to time at any point on the outer wall. Then, the size of dispersed phase microdroplets is determined using a relationship between dispersed-phase flow rate and the droplet formation frequency. The droplet size obtained using the pressure fluctuation method is compared with that from the volume fraction method, and it is found that the error is less than 5%. The deviation is attributed to the formation of satellite droplets in the simulations. The relationship between the nondimensional parameters flow-rate ratio, capillary number, and normalized droplet diameter is investigated systematically, and empirical relations are obtained through power-law regression. The effects of interfacial tension, flow-rate ratio, and viscosity ratio on the magnitude of pressure oscillations and the corresponding droplet size are studied. All the parameters are found to have significant effects on droplet size. The ability of the proposed method to predict microdroplet size is significant with regard to potential applications to biomedical systems and drug delivery.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3