Mg-doping and free-hole properties of hot-wall MOCVD GaN

Author:

Papamichail A.12ORCID,Kakanakova-Georgieva A.1ORCID,Sveinbjörnsson E. Ö.13ORCID,Persson A. R.14ORCID,Hult B.5ORCID,Rorsman N.5ORCID,Stanishev V.2ORCID,Le S. P.1ORCID,Persson P. O. Å.4ORCID,Nawaz M.6,Chen J. T.17ORCID,Paskov P. P.1ORCID,Darakchieva V.128ORCID

Affiliation:

1. Department of Physics, Chemistry and Biology (IFM), Center for III-Nitride Technology, C3NiT—Janzén, Linköping University, SE-58183 Linköping, Sweden

2. Terahertz Materials Analysis Center, THeMAC, Linköping University, SE-58183 Linköping, Sweden

3. Science Institute, University of Iceland, Dunhagi 5, IS-105 Reykjavik, Iceland

4. Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden

5. Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden

6. Hitachi Energy, Forskargrand 7, 721 78 Vesterás, Sweden

7. SweGaN AB, Olaus Magnus väg 48A, SE-58330 Linköping, Sweden

8. Solid State Physics and NanoLund, Lund University, P. O. Box 118, 221 00 Lund, Sweden

Abstract

The hot-wall metal-organic chemical vapor deposition (MOCVD), previously shown to enable superior III-nitride material quality and high performance devices, has been explored for Mg doping of GaN. We have investigated the Mg incorporation in a wide doping range ([Formula: see text] cm−3 up to [Formula: see text] cm−3) and demonstrate GaN:Mg with low background impurity concentrations under optimized growth conditions. Dopant and impurity levels are discussed in view of Ga supersaturation, which provides a unified concept to explain the complexity of growth conditions impact on Mg acceptor incorporation and compensation. The results are analyzed in relation to the extended defects, revealed by scanning transmission electron microscopy, x-ray diffraction, and surface morphology, and in correlation with the electrical properties obtained by Hall effect and capacitance–voltage (C–V) measurements. This allows to establish a comprehensive picture of GaN:Mg growth by hot-wall MOCVD providing guidance for growth parameters optimization depending on the targeted application. We show that substantially lower H concentration as compared to Mg acceptors can be achieved in GaN:Mg without any in situ or post-growth annealing resulting in p-type conductivity in as-grown material. State-of-the-art [Formula: see text]-GaN layers with a low resistivity and a high free-hole density (0.77 [Formula: see text] cm and [Formula: see text] cm[Formula: see text], respectively) are obtained after post-growth annealing demonstrating the viability of hot-wall MOCVD for growth of power electronic device structures.

Funder

VINNOVA

Swedish Research Council VR under award

Swedish Foundation for Strategic Research

Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3