Atomic layer etching of ferroelectric hafnium zirconium oxide thin films enables giant tunneling electroresistance

Author:

Hoffmann M.1ORCID,Murdzek J. A.2ORCID,George S. M.2ORCID,Slesazeck S.3ORCID,Schroeder U.3ORCID,Mikolajick T.34ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA

2. Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, USA

3. NaMLab gGmbH, Dresden 01187, Germany

4. Chair of Nanoelectronics, TU Dresden, Dresden 01187, Germany

Abstract

The ferroelectric properties of hafnium oxide and zirconium oxide based thin films are promising for applications in low power electronics, such as ultra-thin ferroelectric tunneling devices. However, the amount of ferroelectric phase in the film depends on their polycrystalline morphology, which changes with film thickness. Therefore, controlling the film thickness without changing the ferroelectric properties has remained challenging. Here, we propose the use of thermal atomic layer etching to decouple the ferroelectric phase stabilization from the film thickness. First, the ferroelectric phase fraction is maximized by crystallizing the film at an optimized film thickness. Subsequently, the ferroelectric film thickness is reduced to the desired range by atomic layer etching. We demonstrate the feasibility of this approach for a ferroelectric hafnium zirconium oxide film of 10 nm initial thickness, which we integrate into a double-layer ferroelectric tunnel junction. The atomic layer etch rate of ferroelectric hafnium zirconium oxide using HF and dimethylaluminum chloride is found to be ∼0.2 Å/cycle. Although the ferroelectric phase persists after atomic layer etching, the etching increases the surface roughness. For applications in ferroelectric tunnel junctions, we show that atomic layer etching of ferroelectric hafnium zirconium oxide can improve the read current by more than a factor of 200, while at the same time reducing the read voltage by 43%. The resulting tunneling electroresistance of about 2500 is the highest reported so far for polycrystalline hafnium zirconium oxide-based materials.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3