Electronic Synapses Enabled by an Epitaxial SrTiO3‐δ / Hf0.5Zr0.5O2 Ferroelectric Field‐Effect Memristor Integrated on Silicon

Author:

Siannas Nikitas12ORCID,Zacharaki Christina12,Tsipas Polychronis1,Kim Dong Jik3,Hamouda Wassim3,Istrate Cosmin4,Pintilie Lucian4,Schmidbauer Martin5ORCID,Dubourdieu Catherine36,Dimoulas Athanasios1ORCID

Affiliation:

1. Institute of Nanoscience and Nanotechnology National Center for Scientific Research DEMOKRITOS Neapoleos 27 and Patriarchou Gigoriou Str. 15341 Athens Attiki Greece

2. Department of Physics National Kapodistrian University of Athens Athens Greece

3. Institute on Functional Oxides for Energy‐Efficient IT (IFOX) Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner Platz 1 14109 Berlin Germany

4. National Institute of Materials Physics Atomistilor 405A Magurele Romania

5. Leibniz‐Institut für Kristallzüchtung (IKZ) Max‐Born‐Str. 2 12489 Berlin Germany

6. Physical Chemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany

Abstract

AbstractSynapses play a vital role in information processing, learning, and memory formation in the brain. By emulating the behavior of biological synapses, electronic synaptic devices hold the promise of enabling high‐performance, energy‐efficient, and scalable neuromorphic computing. Ferroelectric memristive devices integrate the characteristics of both ferroelectric and memristive materials and present a far‐reaching potential as artificial synapses. Here, it is reported on a new ferroelectric device on silicon, a field‐effect memristor, consisting of an epitaxial ultrathin ferroelectric Hf0.5Zr0.5O2 film sandwiched between an epitaxial highly doped oxide semiconductor SrTiO3‐δ and a top metal. Upon a low voltage of less than 2 V, the field‐effect modulation in the semiconductor enables to access multiple states. The device works in a large time domain ranging from milliseconds down to tens of nanoseconds. By gradually switching the polarization by identical pulses, the ferroelectric diode devices can dynamically adjust the synaptic strength to mimic short‐ and long‐term memory plasticity. Ionic contributions due to redox processes in the oxide semiconductor beneficially influence the device operation and retention.

Funder

European Regional Development Fund

H2020 Industrial Leadership

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3