Controllable growth of large-area 1T′, 2H ultrathin MoTe2 films, and 1T′–2H in-plane homojunction

Author:

Li Jiacheng1,Gao Hui1,Zhou Guoliang1,Li Yan1,Chai Ye1,Hao Guolin12ORCID

Affiliation:

1. School of Physics and Optoelectronics and Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, People's Republic of China

2. Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China

Abstract

Atomically thin molybdenum ditelluride (MoTe2) has been intensively studied as an emerging material for electronics and optoelectronics due to its unique properties. While the small free energy difference between the 2H and 1T′ phases of MoTe2 always results in mixed-phase growth, precisely controlled phase transition of MoTe2 nanostructures is still a considerable challenge. Here, the centimeter-scale 1T′, 2H ultrathin MoTe2 films, and in-plane 1T′–2H homojunction have been synthesized by ambient pressure chemical vapor deposition based on the precursor design and space-confined strategies. The controllable growth of pure 1T′, 2H MoTe2, and 1T′–2H mixed-phase MoTe2 with phase separation and homogeneous mixture, respectively, has been achieved by adjusting growth temperature and growth time. The thickness of synthesized 1T′ and 2H ultrathin MoTe2 films can be effectively controlled by tuning the space-confined height. The corresponding growth mechanism was further illuminated based on systematically experimental characterizations and computational fluid dynamics simulations. The electrical transport properties of 1T′ and 2H MoTe2 films were investigated by conductive atomic force microscope and MoTe2-based thin-film field-effect transistors. Our experimental results provide a new route to realize the phase transition of two-dimensional materials, which makes these materials easily accessible as functional building blocks for next-generation electronic and optoelectronic devices.

Funder

Natural Science Foundation of China

Key Research and Development Program of Hunan Province of China

Grants from the Science and Technology Project of Hunan Province

Program for Changjiang Scholars and Innovative Research Team in University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3