Affiliation:
1. Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract
Atomically thin two-dimensional transition metal dichalcogenides (TMDCs) have been regarded as ideal and promising nanomaterials that bring broad application prospects in extensive fields due to their ultrathin layered structure, unique electronic band structure, and multiple spatial phase configurations. TMDCs with different phase structures exhibit great diversities in physical and chemical properties. By regulating the phase structure, their properties would be modified to broaden the application fields. In this mini review, focusing on the most widely concerned molybdenum dichalcogenides (MoX2: X = S, Se, Te), we summarized their phase structures and corresponding electronic properties. Particularly, the mechanisms of phase transformation are explained, and the common methods of phase regulation or phase stabilization strategies are systematically reviewed and discussed. We hope the review could provide guidance for the phase regulation of molybdenum dichalcogenides nanomaterials, and further promote their real industrial applications.
Funder
National Natural Science Foundation of China