Polarity determination of crystal defects in zincblende GaN by aberration-corrected electron microscopy

Author:

Xiu Huixin12ORCID,Fairclough Simon M.2ORCID,Gundimeda Abhiram2ORCID,Kappers Menno J.2ORCID,Wallis David J.23ORCID,Oliver Rachel A.2ORCID,Frentrup Martin2ORCID

Affiliation:

1. School of Materials and Chemistry, University of Shanghai for Science and Technology 1 , 516 Jungong Road, Yangpu District, Shanghai 200093, China

2. Department of Materials Science and Metallurgy, University of Cambridge 2 , 27 Charles Babbage Rd., Cambridge CB3 0FS, United Kingdom

3. Centre for High Frequency Engineering, University of Cardiff 3 , 5 The Parade, Newport Road, Cardiff CF24 3AA, United Kingdom

Abstract

Aberration-corrected scanning transmission electron microscopy techniques are used to study the bonding configuration between gallium cations and nitrogen anions at defects in metalorganic vapor-phase epitaxy-grown cubic zincblende GaN on vicinal (001) 3C-SiC/Si. By combining high-angle annular dark-field and annular bright-field imaging, the orientation and bond polarity of planar defects, such as stacking faults and wurtzite inclusions, were identified. It is found that the substrate miscut direction toward one of the 3C-SiC ⟨110⟩ in-plane directions is correlated with the crystallographic [1–10] in-plane direction and that the {111} planes with a zone axis parallel to the miscut have a Ga-polar character, whereas the {111} planes in the zone perpendicular to the miscut direction have N-polarity. The polarity of {111}-type stacking faults is maintained in the former case by rotating the coordination of Ga atoms by 180° around the ⟨111⟩ polar axes and in the latter case by a similar rotation of the coordination of the N atoms. The presence of small amounts of the hexagonal wurtzite phase on Ga-polar {111} planes and their total absence on N-polar {111} planes is tentatively explained by the preferential growth of wurtzite GaN in the [0001] Ga-polar direction under non-optimized growth conditions.

Funder

Engineering and Physical Sciences Research Council

China Scholarship Council

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3