Prediction of particle-laden pipe flows using deep neural network models

Author:

Haghshenas Armin1ORCID,Hedayatpour Shiva2ORCID,Groll Rodion3ORCID

Affiliation:

1. Nordex Energy GmbH 1 , Langenhorner Chaussee 600, 22419 Hamburg, Germany

2. Mathematics and Computer Science, University of Bremen 2 , Bibliothekstrasse 5, 28359 Bremen, Germany

3. Center of Applied Space Technology and Microgravity, University of Bremen 3 , Am Fallturm 2, 28359 Bremen, Germany

Abstract

An accurate and fast prediction of particle-laden flow fields is of particular relevance for a wide variety of industrial applications. The motivation for this research is to evaluate the applicability of deep learning methods for providing statistical properties of the carrier and dispersed phases in a particle-laden vertical pipe flow. Deep neural network (DNN) models are trained for different dependent variables using 756 high-fidelity datasets acquired from point-particle large-eddy simulations for different values of Stokes number, St, bulk particle volume fraction, Φ¯v, and wall roughness, Δγ, for the range St=10−500, Φ¯v=5×10−5−10−3, and Δγ=1°−6°. The considered parameter space corresponds to the inertia-dominated regime and covers a large extent of the typical conditions in powder-based laser metal deposition. We find that the DNN models capture the nonlinear dynamics of the system and recreate the statistical properties of the particle-laden pipe flow. However, DNN predictions of the particle statistics are of higher accuracy compared to the fluid statistics, which is attributed to the highly non-monotonic dependence of the fluid statistics on the control parameters. Owing to significantly decreased time-to-solution, the trained DNN models are promising as surrogate models to expedite model development and design process of various industrial applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3