Machine learning and numerical simulation research on specific energy consumption for gradated coarse particle two-phase flow in inclined pipes

Author:

Wan ChuyiORCID,Xiao ShengpengORCID,Zhou DaiORCID,Zhu HongboORCID,Bao YanORCID,Huang Shuai,Huan Caiyun,Han ZhaolongORCID

Abstract

In deep-sea mining engineering, accurately predicting the energy required per unit length of pipeline to transport a unit mass of solids (dimensionless specific energy consumption, DSEC) is crucial for ensuring energy conservation and efficiency in the project. Based on our previous work, we utilized the machine learning (ML) and the computational fluid dynamics (CFD)–discrete element method (DEM) method to study the transport characteristics and flow field variations of gradated coarse particles in inclined pipes (gradated particles refer to solid particles mixed in specific size and quantity ratios). First, we collect 1185 sets of data from 13 experimental literature, and after analyzing and processing them, an ensemble model based on four other ML models is developed. Both for pure substance particles (PS) and mixed particles (MP), the prediction accuracy of this ensemble model is relatively higher (PSs are spherical particles with uniform size and density, and MPs are particles with different shapes, sizes, and densities). Then, the CFD-DEM process and the operating conditions include low flow velocity with low volume concentration (2 m/s and 2.5%), low flow velocity with high volume concentration (2 m/s and 7.5%), and high flow velocity with low volume concentration (4 m/s and 2.5%). Under conditions of low flow velocity and low concentrations, as well as high flow velocity and low concentrations, the DSEC hardly changes with the variation of the pipe inclination angle. Under low flow velocity and high-concentration conditions, as the pipe gradually becomes vertical, the value of DSEC gradually increases.

Funder

National Youth Foundation of China

intergovernmental international science and technology cooperation projects of Shanghai Municipality

National Natural Science Foundation of China

Sichuan science and technology

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

the Open Fund of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3