Self-supervised learning based on Transformer for flow reconstruction and prediction

Author:

Xu BonanORCID,Zhou YuanyeORCID,Bian XinORCID

Abstract

Machine learning has great potential for efficient reconstruction and prediction of flow fields. However, existing datasets may have highly diversified labels for different flow scenarios, which are not applicable for training a model. To this end, we make a first attempt to apply the self-supervised learning (SSL) technique to fluid dynamics, which disregards data labels for pre-training the model. The SSL technique embraces a large amount of data (8000 snapshots) at Reynolds numbers of Re = 200, 300, 400, and 500 without discriminating between them, which improves the generalization of the model. The Transformer model is pre-trained via a specially designed pretext task, where it reconstructs the complete flow fields after randomly masking 20% data points in each snapshot. For the downstream task of flow reconstruction, the pre-trained model is fine-tuned separately with 256 snapshots for each Reynolds number. The fine-tuned models accurately reconstruct the complete flow fields based on less than 5% random data points within a limited window even for Re = 250 and 600, whose data were not seen in the pre-trained phase. For the other downstream task of flow prediction, the pre-training model is fine-tuned separately with 128 consecutive snapshot pairs for each corresponding Reynolds number. The fine-tuned models then correctly predict the evolution of the flow fields over many periods of cycles. We compare all results generated by models trained via SSL and models trained via supervised learning, where the former has unequivocally superior performance. We expect that the methodology presented here will have wider applications in fluid mechanics.

Funder

Post-doctoral Fellowship of Zhejiang University

100 Talents Program of Zhejiang University

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3