Fast transonic flow prediction enables efficient aerodynamic design

Author:

Zhou Hongjie,Xie FangfangORCID,Ji Tingwei,Zhang XinshuaiORCID,Zheng Changdong,Zheng YaoORCID

Abstract

A deep learning framework is proposed for real-time transonic flow prediction. To capture the complex shock discontinuity of transonic flow, we introduce the residual network ResNet and deconvolutional neural networks to learn the nonlinear discontinuity phenomenon in transonic flow, which is affected by the Mach number, angle of attack, Reynolds number, and aerodynamic shape. In our framework, flow field variables on actual grid points are utilized in the neural network training to avoid the interpolation operation and the input of spatial position with a point cloud that is required with traditional convolutional neural networks. To investigate and validate the proposed framework, transonic flows around two-dimensional airfoils and three-dimensional wings are utilized to verify its effectiveness and prediction accuracy. The results prove that the model is able to efficiently learn the transonic flow field under the influence of the Mach number, angle of attack, Reynolds number, and aerodynamic shape. Significantly, some essential physical features, such as shock strength and location, flow separation, and the boundary layer, are accurately captured by this model. Furthermore, it is shown that our framework is able to make accurate predictions of the pressure distribution and aerodynamic coefficients. Thus, the present work provides an efficient and robust surrogate model for computational fluid dynamics simulation that enhances the efficiency of complex aerodynamic shape design optimization tasks and represents a step toward the realization of the digital twin concept.

Funder

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference58 articles.

1. The digital twin paradigm for future NASA and US Air Force vehicles,2012

2. Aerodynamic data fusion toward the digital twin paradigm;AIAA J.,2020

3. High performance parallel computing of flows in complex geometries. I. Methods;Comput. Sci. Discovery,2009

4. High-performance parallel implicit CFD;Parallel Comput.,2001

5. High performance computing using MPI and OpenMP on multi-core parallel systems;Parallel Comput.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3