Deep learning for airfoil aerodynamic-electromagnetic coupling optimization with random forest

Author:

Jin Shi-YiORCID,Chen Shu-ShengORCID,Feng CongORCID,Gao Zheng-HongORCID

Abstract

Reducing the design variable space is crucial in multi-objective airfoil profile optimization to improve optimization efficiency and reduce computational costs. Based on random forest and deep neural networks (DNNs), this work performs range reduction on ten design variables obtained through a fourth-order class shape transformation parameterization method for subsonic airfoil profiles. Three aerodynamic performance objectives (lift coefficient, drag coefficient, and lift-to-drag ratio) are evaluated using the Reynolds-averaged Navier–Stokes equations, and two radar stealth performance objectives (horizontal and vertical polarization radar cross sections) are assessed through the method of moments. By combining a DNN architecture with an improved regression prediction capability, predictive models are trained for mapping design variables to design objectives. The prediction errors are below 3% for the aerodynamic performance design objectives and below 1% for the stealth performance design objectives. The particle swarm optimization algorithm provides optimized airfoil profiles for three scenarios. First is a higher lift coefficient with a lower radar cross section. Second is a lower radar cross section. Third is a higher lift coefficient. Increasing the airfoil curvature and reducing the maximum thickness improves the lift coefficient by 386 counts and reduces the drag coefficient by 17 counts. By curving the airfoil leading edge, the radar cross section for the transverse electric and transverse magnetic polarizations decreased by 2.78 and 2.09 dBsm, respectively.

Funder

Young Elite Scientists Sponsorship Program by CAST

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference31 articles.

1. Gappy proper orthogonal decomposition-based two-step optimization for airfoil design;AIAA J.,2012

2. Modeling multiresponse surfaces for airfoil design with multiple-output-Gaussian-process regression;J. Aircr.,2014

3. A novel framework for multi-objective optimization of airfoils using invasive weed optimization,2020

4. Learning the aerodynamic design of supercritical airfoils through deep reinforcement learning;AIAA J.,2021

5. Comparing data-driven and conventional airfoil shape design optimization,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3