Resistivity scaling in CuTi determined from transport measurements and first-principles simulations

Author:

Zhang Minghua1ORCID,Kumar Sushant1ORCID,Sundararaman Ravishankar1ORCID,Gall Daniel1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, USA

Abstract

The resistivity size effect in the ordered intermetallic CuTi compound is quantified using in situ and ex situ thin film resistivity ρ measurements at 295 and 77 K, and density functional theory Fermi surface and electron–phonon scattering calculations. Epitaxial CuTi(001) layers with thickness d = 5.8–149 nm are deposited on MgO(001) at 350 °C and exhibit ρ vs d data that are well described by the classical Fuchs and Sondheimer model, indicating a room-temperature effective electron mean free path λ = 12.5 ± 0.6 nm, a bulk resistivity ρo = 19.5 ± 0.3 μΩ cm, and a temperature-independent product ρoλ = 24.7 × 10−16 Ω m2. First-principles calculations indicate a strongly anisotropic Fermi surface with electron velocities ranging from 0.7 × 105 to 6.6 × 105 m/s, electron–phonon scattering lengths of 0.8–8.5 nm (with an average of 4.6 nm), and a resulting ρo = 20.6 ± 0.2 μΩ cm in the (001) plane, in excellent agreement (7% deviation) with the measurements. However, the measured ρoλ is almost 2.4 times larger than predicted, indicating a break-down of the classical transport models. Air exposure causes a 6%–30% resistivity increase, suggesting a transition from partially specular (p = 0.5) to completely diffuse surface scattering due to surface oxidation as detected by x-ray photoelectron spectroscopy. Polycrystalline CuTi layers deposited on SiO2/Si substrates exhibit a 001 texture, a grain width that increases with d, and a 74%–163% larger resistivity than the epitaxial layers due to electron scattering at grain boundaries. The overall results suggest that CuTi is a promising candidate for highly scaled interconnects in integrated circuits only if it facilitates liner-free metallization.

Funder

Semiconductor Research Corporation

Empire State Development's Division of Science, Technology and Innovation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3