Multi-peak emission of In2O3 induced by oxygen vacancy aggregation

Author:

Peng Yin-Hui1,He Chang-Chun1,Zhao Yu-Jun1ORCID,Yang Xiao-Bao1ORCID

Affiliation:

1. School of Physics and Optoelectronics, South China University of Technology , Guangzhou 510640, China

Abstract

Oxygen vacancy is crucial to the optical properties in In2O3, however, the single oxygen vacancy model fails to explain the observed multi-peak emission in the experiment. Herein, we have theoretically investigated the diversity of oxygen vacancy distribution, revealing the relationship between the defect configurations and the optical properties. Combining the first-principles calculations and bayesian regularized artificial neural networks, we demonstrate that the structural stability can be remarkably enhanced by multi-oxygen vacancy aggregation, which will evolve with the defect concentration and temperature. Notably, our results indicate that the single oxygen vacancy will induce the emission peaks centered at 1.35 eV, while multi-peak emission near 2.35 eV will be attributed to the distribution of aggregated double oxygen vacancies. Our findings provide a comprehensive understanding of multi-peak emission observed in In2O3, and the rules of the vacancy distribution may be extended for other metal oxides to modulate the optical properties in practice.

Funder

the Key-Area Research and development Program of Guangdong Province

Guangdong Provincial Keylab for Computational Science and Materials Design program

National Natural Science foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3