Impact of nanoscale fluctuations and cap-layer thickness in buried InGaN single quantum wells probed by tip-enhanced Raman scattering

Author:

Ries M.12ORCID,Poliani E.1ORCID,Nippert F.1ORCID,Seidlitz D.1ORCID,Greif L. T. H.1ORCID,Koslow I.1,Bläsing J.3ORCID,Auf der Maur M.4ORCID,Hoffmann A.12,Esser N.12ORCID,Wagner M. R.15ORCID

Affiliation:

1. Technische Universität Berlin, Institute of Solid State Physics 1 , Hardenberstraße 36, 10623 Berlin, Germany

2. Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V. 4 , Schwarzschildstr. 8, 12489 Berlin, Germany

3. Institute of Physics, Otto-von-Guericke-University Magdeburg 2 , Universitätsplatz 2, 39106 Magdeburg, Germany

4. Department of Electronic Engineering, University of Rome Tor Vergata 3 , Via del Politecnico 1, 00133 Rome, Italy

5. Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V. 5 , Hausvogteiplatz 5–7, 10117 Berlin, Germany

Abstract

Ternary semiconductors such as InGaN thin films, quantum wells, and superlattices commonly exhibit alloy fluctuations that become increasingly pronounced with higher In-content. The thickness fluctuations of quantum wells and their thin cap-layers further introduce nanoscale inhomogeneities that alter the potential landscape. In this work, we present a combined theoretical and experimental study of InGaN single quantum wells with thin GaN cap-layers to unravel the influence of cap-layer thickness, compositional inhomogeneity, and thickness fluctuations on their electronic and optical properties. A pronounced spectral shift of quantum well emission for thin cap-layers between 1 and 10 nm is observed by micro-photoluminescence spectroscopy. The origin of this shift is explained by calculations of electronic band profiles and probability density overlap of carriers in the quantum well. The impact of alloy fluctuations and homogeneity for different cap-layer thicknesses is studied on both the microscale and nanoscale using UV micro-Raman scattering and tip-enhanced Raman spectroscopy (TERS). On the microscale, the alloy composition as determined by micro-Raman mapping appears very homogeneous except for the thinnest 1 nm cap-layer where small fluctuations are visible. On the nanoscale, TERS reveals local fluctuations on a 20–30 nm length scale. The influence of the cap-layer thickness on the TERS spectra is discussed regarding both the nanoscale homogeneity and the depth resolution of the near-field Raman scattering technique. Our results demonstrate the capabilities of TERS to resolve nanoscale thickness fluctuations and compositional inhomogeneities in ultra-thin semiconductor layers, even when they are buried by thin cap-layers with thicknesses below 10 nm.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3