Picosecond magneto-optic thermometry measurements of nanoscale thermal transport in AlN thin films

Author:

Angeles Frank1ORCID,Khan Samreen1ORCID,Ortiz Victor H.1ORCID,Xu Mingfei2ORCID,Luo Shisong2,Mudiyanselage Dinusha Herath3ORCID,Fu Houqiang3ORCID,Zhao Yuji2,Wilson Richard B.1ORCID

Affiliation:

1. Mechanical Engineering, Materials Science and Engineering, University of California 1 , Riverside, California 92521, USA

2. Department of Electrical and Computer Engineering, Rice University 2 , Houston, Texas 77005, USA

3. School of Electrical, Computer and Energy Engineering, Arizona State University 3 , Tempe, Arizona 85287, USA

Abstract

The thermal conductivity Λ of wide bandgap semiconductor thin films, such as AlN, affects the performance of high-frequency devices, power devices, and optoelectronics. However, accurate measurements of Λ in thin films with sub-micrometer thicknesses and Λ > 100 W m−1 K−1 is challenging. Widely used pump/probe metrologies, such as time–domain thermoreflectance (TDTR) and frequency–domain thermoreflectance, lack the spatiotemporal resolution necessary to accurately quantify thermal properties of sub-micrometer thin films with high Λ. In this work, we use a combination of magneto-optic thermometry and TiN interfacial layers to significantly enhance the spatiotemporal resolution of pump/probe thermal transport measurements. We use our approach to measure Λ of 100, 400, and 1000 nm AlN thin films. We coat AlN thin films with a ferromagnetic thin-film transducer with the geometry of (1 nm-Pt/0.4 nm-Co)x3/(2 nm-TiN). This PtCo/TiN transducer has a fast thermal response time of <50 ps, which allows us to differentiate between the thermal response of the transducer, AlN thin film, and substrate. For the 100, 400, and 1000 nm thick AlN films, we determine Λ to be 200 ± 80, 165 ± 35, and 300 ± 70 W m−1 K−1, respectively. We conclude with an uncertainty analysis that quantifies the errors associated with pump/probe measurements of thermal conductivity, as a function of transducer type, thin-film thermal conductivity, and thin-film thickness. Time resolved magneto-optic Kerr effect experiments can measure films that are three to five times thinner than is possible with standard pump/probe metrologies, such as TDTR. This advance in metrology will enable better characterization of nanoscale heat transfer in high thermal conductivity material systems like wide bandgap semiconductor heterostructures and devices.

Funder

ULTRA

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3