High field dielectric response in κ-Ga2O3 films

Author:

He Fan1ORCID,Jiang Kunyao2ORCID,Choi Yeseul1ORCID,Aronson Benjamin L.1ORCID,Shetty Smitha1ORCID,Tang Jingyu2ORCID,Liu Bangzhi1ORCID,Liu Yongtao3ORCID,Kelley Kyle P.3ORCID,Rayner Gilbert B.4,Davis Robert F.25ORCID,Porter Lisa M.2ORCID,Trolier-McKinstry Susan16ORCID

Affiliation:

1. Materials Research Institute, The Pennsylvania State University 1 , University Park, Pennsylvania 16802, USA

2. Department of Materials Science and Engineering, Carnegie Mellon University 2 , Pittsburgh, Pennsylvania 15213, USA

3. Center for Nanoscale Materials Science, Oak Ridge National Laboratory 3 , Oak Ridge, Tennessee 37831, USA

4. The Kurt J. Lesker Company 6 , 1925 PA-51, Jefferson Hills, Pennsylvania 15025, USA

5. Department of Electrical and Computer Engineering, Carnegie Mellon University 5 , Pittsburgh, Pennsylvania 15213, USA

6. Materials Science and Engineering Department, The Pennsylvania State University 4 , University Park, Pennsylvania 16802, USA

Abstract

κ-Ga2O3 has been predicted to be a potential ferroelectric material. In this work, undoped Ga2O3 films were grown by either plasma-enhanced atomic layer deposition (PEALD) or metal organic chemical vapor deposition (MOCVD) on platinized sapphire substrates. 50 nm thick PEALD films with a mixture of κ-Ga2O3 and β-Ga2O3 had a relative permittivity of ∼27, a loss tangent below 2%, and high electrical resistivity up to ∼1.5 MV/cm. 700 nm thick MOCVD films with predominantly the κ-Ga2O3 phase had relative permittivities of ∼18 and a loss tangent of 1% at 10 kHz. Neither film showed compelling evidence for ferroelectricity measured at fields up to 1.5 MV/cm, even after hundreds of cycles. Piezoresponse force microscopy measurements on bare κ-Ga2O3 showed a finite piezoelectric response that could not be reoriented for electric fields up to 1.33 MV/cm.

Funder

U.S. Department of Energy

Mellon College of Science, Carnegie Mellon University

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3