Independent trajectory mixed quantum-classical approaches based on the exact factorization

Author:

Ha Jong-Kwon1ORCID,Min Seung Kyu1ORCID

Affiliation:

1. Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea

Abstract

Mixed quantum-classical dynamics based on the exact factorization exploits the “derived” electron-nuclear correlation (ENC) term, aiming for the description of quantum coherences. The ENC contains interactions between the phase of electronic states and nuclear quantum momenta, which depend on the spatial shape of the nuclear density. The original surface hopping based on the exact factorization (SHXF) [Ha et al., J. Phys. Chem. Lett. 9, 1097 (2018)] exploits frozen Gaussian functions to construct the nuclear density in the ENC term, while the phase of electronic states is approximated as a fictitious nuclear momentum change. However, in reality, the width of nuclear wave packets varies in time depending on the shape of potential energy surfaces. In this work, we present a modified SHXF approach and a newly developed Ehrenfest dynamics based on the exact factorization (EhXF) with time-dependent Gaussian functions and phases by enforcing total energy conservation. We perform numerical tests for various one-dimensional two-state model Hamiltonians. Overall, the time-dependent width of Gaussian functions and the energy conserving phase show a reliable decoherence compared to the original frozen Gaussian-based SHXF and the exact quantum mechanical calculation. In particular, the energy conserving phase is crucial for EhXF to reproduce the correct quantum dynamics.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3