Photochemistry beyond the red limit in chlorophyll f–containing photosystems

Author:

Nürnberg Dennis J.1ORCID,Morton Jennifer2,Santabarbara Stefano3,Telfer Alison1,Joliot Pierre4,Antonaru Laura A.1,Ruban Alexander V.5,Cardona Tanai1ORCID,Krausz Elmars3ORCID,Boussac Alain6ORCID,Fantuzzi Andrea1ORCID,Rutherford A. William1ORCID

Affiliation:

1. Department of Life Sciences, Imperial College, London SW7 2AZ, UK.

2. Research School of Chemistry, ANU, Canberra, Australia.

3. Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via Celoria 26, 20133 Milano, Italy.

4. Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141 Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, 13 Rue Pierre et Marie Curie, 75005 Paris, France.

5. School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.

6. Institut de Biologie Intégrative de la Cellule, UMR 9198, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France.

Abstract

Lower-energy photons do the work, too Plants and cyanobacteria use chlorophyll-rich photosystem complexes to convert light energy into chemical energy. Some organisms have developed adaptations to take advantage of longer-wavelength photons. Nürnberg et al. studied photosystem complexes from cyanobacteria grown in the presence of far-red light. The authors identified the primary donor chlorophyll as one of a few chlorophyll molecules in the far-red light–adapted enzymes that were chemically altered to shift their absorption spectrum. Kinetic measurements demonstrated that far-red light is capable of directly driving water oxidation, despite having less energy than the red light used by most photosynthetic organisms. Science , this issue p. 1210

Funder

Biotechnology and Biological Sciences Research Council

Leverhulme Trust

Royal Society

Imperial College London

Agence Nationale de la Recherche

Australian Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 207 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3