Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites

Author:

Blancon J.-C.1ORCID,Tsai H.12,Nie W.1,Stoumpos C. C.3ORCID,Pedesseau L.4ORCID,Katan C.5ORCID,Kepenekian M.5ORCID,Soe C. M. M.3ORCID,Appavoo K.6,Sfeir M. Y.6ORCID,Tretiak S.1ORCID,Ajayan P. M.2,Kanatzidis M. G.37,Even J.4ORCID,Crochet J. J.1ORCID,Mohite A. D.1ORCID

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

2. Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA.

3. Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.

4. Fonctions Optiques pour les Technologies de l’Information (FOTON), Institut National des Sciences Appliquées (INSA) de Rennes, CNRS, UMR 6082, 35708 Rennes, France.

5. Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes 1, CNRS, UMR 6226, 35042 Rennes, France.

6. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.

7. Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

Abstract

How perovskites have the edge Two-dimensional Ruddlesden-Popper perovskites form quantum wells by sandwiching inorganic-organic perovskite layers used in photovoltaic devices between organic layers. Blancon et al. show that if the perovskite layer is more than two unit cells thick, photogenerated excitons undergo an unusual but highly efficient process for creating free carriers that can be harvested in photovoltaic devices (see the Perspective by Bakr and Mohammed). Lower-energy local states at the edges of the perovskite layer facilitate dissociation into electrons and holes that are well protected from recombination. Science , this issue p. 1288 ; see also p. 1260

Funder

U.S. Department of Energy

Los Alamos National Laboratory

University of Rennes 1

Centre National de la Recherche Scientifique

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3