Illuminating the Devolution of Perovskite Passivation Layers

Author:

Giza Marcin1ORCID,Kozikov Aleksey2ORCID,Lalaguna Paula L.1ORCID,Hutchinson Jake D.3ORCID,Verma Vaibhav2,Vella Benjamin1ORCID,Kumar Rahul1,Hill Nathan2ORCID,Sirbu Dumitru2ORCID,Arca Elisabetta2ORCID,Healy Noel2ORCID,Milot Rebecca L.3ORCID,Kadodwala Malcolm1ORCID,Docampo Pablo1ORCID

Affiliation:

1. School of Chemistry University of Glasgow Glasgow G12 8QQ UK

2. School of Mathematics, Statistics and Physics Newcastle University Newcastle upon Tyne NE1 7RU UK

3. Department of Physics University of Warwick Coventry CV4 7AL UK

Abstract

Surface treatment of perovskite materials with their layered counterparts has become an ubiquitous strategy for maximizing device performance. While layered materials confer great benefits to the longevity and long‐term efficiency of the resulting device stack via passivation of defects and surface traps, numerous reports have previously demonstrated that these materials evolve under exposure to light and humidity, suggesting that they are not fully stable. Therefore, it is crucial to study the behavior of these materials in isolation and in conditions mimicking a device stack. Here, it is shown that perovskite capping layers templated by a range of cations on top of methylammonium lead iodide devolve in conditions commonly found during perovskite fabrication, such as exposure to light, solvent, and moisture. Photophysical, structural, and morphological studies are used to show that the degradation of these layered perovskites occurs via a self‐limiting, pinhole‐mediated mechanism. This results in the loss of whole perovskite sheets, from a few monolayers to tens of nanometers of material, until the system stabilizes again as demonstrated for exfoliated flakes of PEA2PbI4. This means that initially targeted structures may have devolved, with clear optimization implications for device fabrication.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3