Jacobian-free variational method for computing connecting orbits in nonlinear dynamical systems

Author:

Ashtari Omid1ORCID,Schneider Tobias M.1ORCID

Affiliation:

1. Emergent Complexity in Physical Systems Laboratory (ECPS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland

Abstract

One approach for describing spatiotemporal chaos is to study the unstable invariant sets embedded in the chaotic attractor of the system. While equilibria, periodic orbits, and invariant tori can be computed using existing methods, the numerical identification of heteroclinic and homoclinic connections between them remains challenging. We propose a robust matrix-free variational method for computing connecting orbits between equilibrium solutions. Instead of a common shooting-based approach, we view the identification of a connecting orbit as a minimization problem in the space of smooth curves in the state space that connect the two equilibria. In this approach, the deviation of a connecting curve from an integral curve of the vector field is penalized by a non-negative cost function. Minimization of the cost function deforms a trial curve until, at a global minimum, a connecting orbit is obtained. The method has no limitation on the dimension of the unstable manifold at the origin equilibrium and does not suffer from exponential error amplification associated with time-marching a chaotic system. Owing to adjoint-based minimization techniques, no Jacobian matrices need to be constructed. Therefore, the memory requirement scales linearly with the size of the problem, allowing the method to be applied to high-dimensional dynamical systems. The robustness of the method is demonstrated for the one-dimensional Kuramoto–Sivashinsky equation.

Funder

H2020 European Research Council

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3