Exploring the free-energy landscape of a rotating superfluid

Author:

Cleary Andrew1ORCID,Page Jacob1ORCID

Affiliation:

1. School of Mathematics, University of Edinburgh , Edinburgh EH9 3FD, United Kingdom

Abstract

The equilibrium state of a superfluid in a rotating cylindrical vessel is a vortex crystal—an array of vortex lines, which is stationary in the rotating frame. Experimental realizations of this behavior typically show a sequence of transient states before the free-energy-minimizing configuration is reached. Motivated by these observations, we construct a new method for a systematic exploration of the free-energy landscape via gradient-based optimization of a scalar loss function. Our approach is inspired by the pioneering numerical work of Campbell and Ziff [Phys. Rev. B. 20, 1886 (1979)] and makes use of automatic differentiation, which crucially allows us to include entire solution trajectories in the loss. We first use the method to converge thousands of low free-energy relative equilibria in the unbounded domain for vortex numbers in the range 10≤N≤30, which reveals an extremely dense set of mostly saddle-like solutions. As part of this search, we discover new continuous families of relative equilibria, which are often global minimizers of free energy. These continuous families all consist of crystals arranged in a double-ring configuration, and we assess which state from the family is most likely to be observed experimentally by computing energy-minimizing pathways from nearby local minima—identifying a common entry point into the family. The continuous families become discrete sets of equal-energy solutions when the wall is introduced in the problem. Finally, we develop an approach to compute homoclinic orbits and use it to examine the dynamics in the vicinity of the minimizing state by converging connections for low-energy saddles.

Funder

Engineering and Physical Sciences Research Council

UK Research and Innovation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3