Origin, bifurcation structure and stability of localized states in Kerr dispersive optical cavities

Author:

Parra-Rivas P1,Knobloch E2,Gelens L3,Gomila D4

Affiliation:

1. OPERA-photonics, Université libre de Bruxelles, 50 Avenue F. D. Roosevelt, CP 194/5, B-1050 Bruxelles, Belgium

2. Department of Physics, University of California, Berkeley, CA 94720, USA

3. Laboratory of Dynamics in Biological Systems, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium

4. Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract

Abstract Localized coherent structures can form in externally driven dispersive optical cavities with a Kerr-type non-linearity. Such systems are described by the Lugiato–Lefever (LL) equation, which supports a large variety of dynamical states. Here, we review our current knowledge of the formation, stability and bifurcation structure of localized structures in the one-dimensional LL equation. We do so by focusing on two main regimes of operation: anomalous and normal second-order dispersion. In the anomalous regime, localized patterns are organized in a homoclinic snaking scenario, which is eventually destroyed, leading to a foliated snaking bifurcation structure. In the normal regime, localized structures undergo a different type of bifurcation structure, known as collapsed snaking. The effects of third-order dispersion and various dynamical regimes are also described.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics

Reference129 articles.

1. Lecture Notes in Physics;Akhmediev,2008

2. Springer Series in Computational Mathematics;Allgower,1990

3. Observations of spatiotemporal instabilities of temporal cavity solitons;Anderson;Optica,2016

4. Zero-dispersion Kerr solitons in optical microresonators;Anderson,2020

5. Temporal localized structures in photonic crystal fibre resonators and their spontaneous symmetry-breaking instability;Bahloul;Philos. Trans. Roy. Soc. A,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3