First-principles determination of high thermal conductivity of PCF-graphene: A comparison with graphene

Author:

Chen Xue-Kun1ORCID,Hu Xiao-Yan1,Jia Pin-Zhen2,Xie Guo-Feng3ORCID

Affiliation:

1. School of Mathematics and Physics, University of South China, Hengyang 421001, People's Republic of China

2. Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002, China

3. School of Materials Science and Engineering & Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

Poly-cyclooctatetraene framework (PCF)-graphene, an emerging all-sp2 hybridized two-dimensional (2D) carbon allotrope, possesses an intrinsic direct bandgap (0.77 eV) and excellent mechanical properties, indicating great potential in nanoelectronics. Understanding the thermal transport behavior of PCF-graphene is of vital importance for determining the reliability of related devices based on it. In this work, the thermal transport in PCF-graphene is systematically studied using the Boltzmann transport theory combined with first-principles calculations. The results show that the room-temperature thermal conductivity of PCF-graphene with only considering three-phonon scattering is as high as 1587.3 W/m K along the zigzag direction, and decreases by 27.1% (1157.4 W/m K) when including four-phonon scattering, indicating the four-phonon scattering plays a non-negligible role in in thermal transport. Although the thermal conductivity of PCF-graphene is not as large as that in graphene, it still exceeds most common 2D materials and makes it suitable for applications in the thermal management of microelectronics. Analyses of phonon group velocity and phonon scattering rates are conducted to reveal the high thermal conductivity of PCF. Moreover, as the temperature increases to 800 K, the reduction of thermal conductivity is close to 50% after including four-phonon scattering. The analysis of phonon group velocity and phonon scattering rates are conducted to reveal the underlying mechanism. Our results provide insights for constructing high-thermal-conductivity materials based on 2D carbon allotropes.

Funder

National Natural Science Foundation of China

Construct Program of the Key Discipline in Hunan Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3