Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

Author:

Chen Ke1ORCID,Song Bai1ORCID,Ravichandran Navaneetha K.2,Zheng Qiye3,Chen Xi4ORCID,Lee Hwijong4ORCID,Sun Haoran5,Li Sheng6ORCID,Udalamatta Gamage Geethal Amila Gamage5ORCID,Tian Fei5ORCID,Ding Zhiwei1ORCID,Song Qichen1ORCID,Rai Akash3ORCID,Wu Hanlin6ORCID,Koirala Pawan6,Schmidt Aaron J.1,Watanabe Kenji7ORCID,Lv Bing6ORCID,Ren Zhifeng5ORCID,Shi Li48ORCID,Cahill David G.3ORCID,Taniguchi Takashi7,Broido David2ORCID,Chen Gang1ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Physics, Boston College, Chestnut Hill, MA 02467, USA.

3. Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

4. Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.

5. Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA.

6. Department of Physics, The University of Texas at Dallas, Richardson, TX 75080, USA.

7. National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.

8. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Abstract

A cool way to use isotopes Thermal management of electronics requires materials that can efficiently remove heat. Several promising materials have been found recently, but diamond remains the bulk material with the highest thermal conductivity. Chen et al. found that isotopically pure cubic boron nitride has an ultrahigh thermal conductivity, 75% that of diamond. Using only boron-11 or boron-10 allows the crystal vibrations that carry heat to move more efficiently through the material. This property could be exploited for better regulating the temperature of high-power devices. Science , this issue p. 555

Funder

National Science Foundation

Office of Naval Research

Japan Society for the Promotion of Science

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3