Understanding the importance of four-phonon scattering in low-symmetry monolayer 1T′-ReS2 using machine learning potential

Author:

Yang Xiao1ORCID,Chen Yong-Sen1ORCID,Zheng Yu-Hao1,Wu Cheng-Wei1,Xie Guo-Feng1ORCID,Zeng Yu-Jia1ORCID,Zhou Wu-Xing1ORCID

Affiliation:

1. School of Materials Science and Engineering, Hunan University of Science and Technology , Xiangtan 411201, China

Abstract

The importance of higher-order anharmonic effects on thermal transport has recently been demonstrated in highly symmetrical 2D materials with large acoustic–phonon (A–O) gap. However, the phonon scattering and the thermal transport properties in low-symmetry structures remain ambiguous. In this work, we employed moment tensor potential and Boltzmann transport equation to investigate phonon thermal transport properties of 1T′-ReS2 and 2H-WS2. We show that the mechanism of four-phonon scattering in 1T′-ReS2 is quite different from that in 2H-WS2. In 1T′-ReS2, the four-phonon scattering can reduce the thermal conductivity by up to 40.29%, even in the absence of an acoustic-optical phonon bandgap. The strong four-phonon scattering in 1T′-ReS2 is attributed to A–O phonon scattering mediated by abundant flattening optical phonon modes. However, in 2H-WS2, the strong four-phonon scattering is attributed to the presence of a large A–O phonon bandgap. Our work suggests that considering the four-phonon scattering is essential for calculating the thermal conductivity of 2D materials, even in the absence of an A–O phonon gap.

Funder

Natural Science Foundation of Hunan Province

Scientific Research Foundation of Hunan Provincial Education Department

National Natural Science Foundation of China

The science and technology innovation Program of Hunan Province

Publisher

AIP Publishing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3