Topological Phonons and Thermoelectric Conversion in Crystalline Materials

Author:

Ding Zhong‐Ke1,Zeng Yu‐Jia12,Liu Wangping1,Tang Li‐Ming1,Chen Ke‐Qiu1ORCID

Affiliation:

1. Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China

2. School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan 411201 China

Abstract

AbstractTopological phononics, a fascinating frontier in condensed matter physics, holds great promise for advancing energy‐related applications. Topologically nontrivial phonons typically possess gapless edge or surface states. These exotic states of lattice vibrations, characterized by their nontrivial topology, offer unique opportunities for manipulating and harnessing energy transport. The exploration of topological phonons opens new avenues in understanding and controlling thermal transport properties, with potential applications in fields such as thermoelectric materials, phononic devices, and waste heat recovery. Here, an overview of concepts such as Berry curvature and topological invariants, along with the applications of phonon tight‐binding method and nonequilibrium Green's function method in the field of topological phononics is provided. This review encompasses the latest research progress of various topological phonon states within crystalline materials, including topological optical phonons, topological acoustical phonons, and higher‐order topological phonons. Furthermore, the study delves into the prospective applications of topological phonons in the realm of thermoelectric conversion, focusing on aspects like size effects and symmetry engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3