Abstract
We develop a moment method based on the Hermite series of the arbitrary order to calculate viscous-slip, thermal-slip, and temperature-jump coefficients for general gas-surface scattering kernels. Under some usual assumptions of scattering kernels, the solvability is obtained by showing the positive definiteness of the symmetric coefficient matrix in the boundary conditions. For gas flows with the Cercignani–Lampis gas–surface interaction and inverse-power-law intermolecular potentials, the model can capture the slip and jump coefficients accurately with elegant analytic expressions. On the one hand, the proposed method can apply to the cases of arbitrary order moments with increasing accuracy. On the other hand, the explicit formulas for low-order situations are simpler and more accurate than some existing results in references. Therefore, one may apply these formulas in slip and jump conditions to improve the accuracy of macroscopic fluid dynamic models for gas flows.
Funder
National Key Research and Development Program of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献