Effect of near-wall distance on velocity slip and temperature jump conditions in hypersonic rarefied gas flows

Author:

Le Nam T. P.ORCID,Dang Quang Le,Nguyen Duc-Nam,Van Dang Anh

Abstract

In nonequilibrium slip and jump conditions, normal gas velocity and temperature gradients are used to calculate the gas slip velocity and temperature at the surface, respectively. Gökçen et al. (Computational fluid dynamics near the continuum limit, AIAA Paper No. 87-1115, 1987, and Gökçen and MacCormack, Nonequilibrium effects for hypersonic transitional flows using continuum approach, AIAA Paper No. 89-0461, 1989) stated that the tangential velocity and temperature of the gas molecules before a collision with the surface could be interpreted as the macroscopic tangential velocity and temperature of the gas molecules at the so-called near-wall distances auλ and aTλT away from the surface, respectively. The coefficients au and aT are the order of unity. In the present work, new forms of the slip and jump conditions are proposed by modifying the Gökçen slip and jump conditions to include the coefficients (au, aT). Numerical investigations are comprehensively conducted to determine the numerically proper values (au, aT) for the hypersonic rarefied gas flows. Cases such as the circular cylinder in cross-flow and sharp and blunted leading edge wedge are considered in the present work, with nitrogen as the working gas. The simulation results show the significant effects of the coefficients (au, aT) on the accuracy of the slip velocity and surface gas temperature predictions, and the values of au = 1.2 and aT = 1.1 show good agreement with the direct simulation Monte Carlo data.

Funder

National Foundation for Science and Technology Development

Publisher

AIP Publishing

Reference37 articles.

1. Computational fluid dynamics near the continuum limit,1987

2. Nonequilibrium effects for hypersonic transitional flows using continuum approach,1989

3. Evaluation of nonequilibrium boundary condition in simulating hypersonic gas flows;Prog. Flight Phys.,2012

4. On stresses in rarefied gases arising from inequalities of temperature;Philos. Trans. R. Soc.,1879

5. Über Wärmeleitung in verdünnten Gasen;Ann. Phys. Chem.,1898

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3