Affiliation:
1. Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
Abstract
We report the effect of EH6/7 electron trap centers alone on the performance of high-resolution radiation detectors fabricated on n-type 4H–SiC epitaxial layers. A Schottky barrier detector (SBD) and a metal-oxide-semiconductor (MOS) capacitor detector fabricated using two sister samples derived from the same 50 μm 4H–SiC parent wafer exhibited widely different energy resolutions of 0.4% and 0.9% for 5486 keV alpha particles. An equivalent noise charge model analysis ruled out the effect of the detector capacitance and the leakage current on the resolution of the detectors. Deep level transient spectroscopic studies revealed the presence of two trapping centers in each detector within the temperature scan range 240–800 K. The Z1/2 center, a potential electron trap, was detected in both the detectors in equal concentration, which suggested that the observed difference in the energy resolution is due to the presence of the other defect, the EH6/7 center, in the SBD. The capture cross section of the EH6/7 center was calculated to be three orders of magnitude higher than the second defect [a carbon antisite vacancy (CAV) center] observed in the MOS detector with an activation energy of 1.10 eV, which accounted for the enhanced electronic trapping in the SBD leading to its poor energy resolution. It has been proposed that the EH6/7 centers in the SBD have likely been reconfigured to CAV pairs during the thermal growth of the silicon dioxide layer in the MOS detector. The proposed formation mechanism of CAV, a stable qubit state for quantum information processing, addresses the outstanding questions related to the role of defect dynamics in their formation.
Subject
Physics and Astronomy (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献