Formation of oxygen vacancy at surfaces of ZnO by trimethylaluminum

Author:

Eom Hyobin1ORCID,Bae Woojin1,Sung Ju Young2,Choi Ji Hyeon3ORCID,Dae Kyun Seong4,Jang Jae Hyuck4,Park Tae Joo3ORCID,Lee Sang Woon2ORCID,Shong Bonggeun1ORCID

Affiliation:

1. Department of Chemical Engineering, Hongik University 1 , Seoul 04066, South Korea

2. Department of Energy Systems Research and Department of Physics, Ajou University 2 , Suwon 16499, South Korea

3. Department of Materials Science and Chemical Engineering, Hanyang University 3 , Ansan 15588, South Korea

4. Center for Electron Microscopy Research, Korea Basic Science Institute 4 , Daejeon 34133, South Korea

Abstract

The two-dimensional electron gas (2DEG) is a group of electrons that can move freely in horizontal dimensions but are confined in the third direction. It has been reported that atomic layer deposition (ALD) of Al2O3 on various reducible n-type oxides can lead to the formation of 2DEG at the heterojunction interfaces, among which ZnO is known to provide promising properties. In this study, we have performed a theoretical analysis using density functional theory calculations combined with experimental investigations to elucidate the surface reactions of Al2O3 ALD on low-index nonpolar ZnO surfaces, specifically focusing on the formation of oxygen vacancies (VO). The trimethylaluminum precursor was observed to undergo sequential dissociation of CH3 ligands, leading to the removal of surface oxygen of ZnO in the form of dimethyl ether. In addition, by examining the electronic structure after the removal of oxygen, the localization of the charge density at the surface was confirmed. Experimentally, the carrier density of the 2DEG at the Al2O3/ZnO interface showed a strong dependence on the ALD process temperature of Al2O3, confirming the endothermic nature of the formation of the 2DEG. By examining the characteristics of the 2DEG induced by VO, insights into the fundamental comprehension of oxide-based 2DEG systems are provided.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3