Interface design of transparent thermoelectric epitaxial ZnO/SnO2 multilayer film for simultaneous realization of low thermal conductivity and high optical transmittance

Author:

Ishibe Takafumi1ORCID,Komatsubara Yuki1ORCID,Katayama Toranosuke1,Yamashita Yuichiro2ORCID,Naruse Nobuyasu3ORCID,Mera Yutaka3ORCID,Hattori Azusa N.4ORCID,Tanaka Hidekazu4ORCID,Nakamura Yoshiaki1ORCID

Affiliation:

1. Graduate School of Engineering Science, Osaka University 1 , 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

2. National Institute of Advanced Industrial Science and Technology 2 , 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan

3. Department of Fundamental Bioscience, Shiga University of Medical Science 3 , Otsu, Shiga 520-2192, Japan

4. SANKEN (The Institute of Scientific and Industrial Research), Osaka University 4 , 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

Abstract

A transparent thermoelectric material requires not only high thermoelectric performance but also high optical transmittance. However, in transparent nanostructured thermoelectric materials, the nanostructure interface brings the trade-off relationship between thermal conductivity and optical transmittance. We propose an approach for the simultaneous control of thermal conductivity and optical transmittance in the epitaxial nanostructured films, where carriers can be smoothly transported. This is realized by the interface design based on the three strategies: (1) a large atomic mass difference at the heterointerface for low thermal conductivity; (2) heterointerface with almost the same refractive index and flat surface for high optical transmittance; and (3) epitaxial heterointerface for smooth carrier transport. We formed epitaxial ZnO/SnO2 multilayer films based on this design guideline. The multilayer films exhibit lower thermal conductivity and higher optical transmittance than an ever reported transparent nanostructured thermoelectric material. These results highlight that this design is promising to realize high-performance transparent nanostructured thermoelectric materials.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3