Tracking energy scale variations from scan to scan in nuclear resonant vibrational spectroscopy: In situ correction using zero-energy position drifts ΔEi rather than making in situ calibration measurements

Author:

Wang Jessie1ORCID,Yoda Yoshitaka2ORCID,Wang Hongxin3ORCID

Affiliation:

1. School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

2. Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan

3. SETI Institute, Mountain View, California 94043, USA

Abstract

Nuclear resonant vibrational spectroscopy (NRVS) is an excellent modern vibrational spectroscopy, in particular, for revealing site-specific information inside complicated molecules, such as enzymes. There are two different concepts about the energy calibration for a beamline or a monochromator (including a high resolution monochromator): the absolute energy calibration and the practical energy calibration. While the former pursues an as-fine-as-possible and as-repeatable-as-possible result, the latter includes the environment influenced variation from scan to scan, which often needs an in situ calibration measurement to track. However, an in situ measurement often shares a weak beam intensity and therefore has a noisy NRVS spectrum at the calibration sample location, not leading to a better energy calibration/correction in most cases. NRVS users for a long time have noticed that there are energy drifts in the vibrational spectra’s zero-energy positions from scan to scan ([Formula: see text]Ei), but their trend has not been explored and utilized in the past. In this publication, after providing a brief introduction to the critical issue(s) in practical NRVS energy calibrations, we have evaluated the trend and the mechanism for these zero-energy drifts ([Formula: see text]Ei) and explored their link to the energy scales (αi) from scan to scan. Via detailed analyses, we have established a new stepwise procedure for carrying out practical energy calibrations, which includes the correction for the scan-dependent energy variations using [Formula: see text]Ei values rather than running additional in situ calibration measurements. We also proved that one additional instrument-fixed scaling constant (α0) exists to convert such “calibrated” energy axis (E′) to the real energy axis (Ereal). The “calibrated” real energy axis (Ereal) has a preliminary error bar of ±0.1% (the 2[Formula: see text]E divided by the vibrational energy position), which is 4–8 times better than that from the current practical energy calibration procedure.

Funder

National Institute of Health, USA

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3