The True Nature of the Energy Calibration for Nuclear Resonant Vibrational Spectroscopy: A Time-Based Conversion

Author:

Wang HongxinORCID,Yoda Yoshitaka,Wang Jessie

Abstract

Nuclear resonant vibrational spectroscopy (NRVS) is an excellent synchrotron-based vibrational spectroscopy. Its isotope specificity and other advantages are particularly good to study, for example, iron center(s) inside complicated molecules such as enzymes. In order to investigate some small energy shifts, the energy scale variation from scan to scan must be corrected via an in-situ measurement or with other internal reference peak(s) inside the spectra to be calibrated. On the other hand, the energy re-distribution within each scan also needs attention for a sectional scan which has a different scanning time per point in different sections and is often used to measure weak NRVS signals. In this publication, we: (1) evaluated the point-to-point energy re-distribution within each NRVS scan or within an averaged scan with a time-scaled (not energy-scaled) function; (2) discussed the errorbar contributed from the improper “distribution” of ΔEi or the averaged ΔE within one scan (Eerr1) vs. that due to the different ΔEi from different scans (Eerr2). It is well illustrated that the former (Eerr1) is as important as, or sometimes even more important than, the latter (Eerr2); and (3) provided a procedure to re-calibrate the published NRVS-derived PVDOS spectra in case of need. This article establishes the concept that, at least for sectional NRVS scans, the energy positions should be corrected according to the time scanned rather than be scaled with a universal constant, as in a conventional calibration procedure.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3