Elevated temperature spectroscopic ellipsometry analysis of the dielectric function, exciton, band-to-band transition, and high-frequency dielectric constant properties for single-crystal ZnGa2O4

Author:

Hilfiker Matthew1ORCID,Williams Emma1ORCID,Kilic Ufuk1ORCID,Traouli Yousra12ORCID,Koeppe Nate1,Rivera Jose13ORCID,Abakar Assya12ORCID,Stokey Megan1ORCID,Korlacki Rafał1ORCID,Galazka Zbigniew4ORCID,Irmscher Klaus4ORCID,Schubert Mathias15ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

2. Department of Physics, University of Angers, Angers 49100, France

3. Department of Mechanical Engineering, University of Puerto Rico-Mayaguez, PR-108, Mayagüez 00682, Puerto Rico

4. Leibniz-Institut für Kristallzüchtung, 12489 Berlin, Germany

5. Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden

Abstract

We report the elevated temperature (22 °C [Formula: see text]  T [Formula: see text] 600 °C) dielectric function properties of melt grown single crystal ZnGa2O4 using a spectroscopic ellipsometry approach. A temperature dependent Cauchy dispersion analysis was applied across the transparent spectrum to determine the high-frequency index of refraction yielding a temperature dependent slope of 3.885(2) × 10−5 K−1. A model dielectric function critical point analysis was applied to examine the dielectric function and critical point transitions for each temperature. The lowest energy M0-type critical point associated with the direct bandgap transition in ZnGa2O4 is shown to red-shift linearly as the temperature is increased with a subsequent slope of −0.72(4) meV K−1. Furthermore, increasing the temperature results in a reduction of the excitonic amplitude and increase in the exciton broadening akin to exciton evaporation and lifetime shortening. This matches current theoretical understanding of excitonic behavior and critically provides justification for an anharmonic broadened Lorentz oscillator to be applied for model analysis of excitonic contributions.

Funder

National Science Foundation

GraFOx Leibniz Association - Germany

Air Force Office of Scientific Research

Swedish Knut and Alice Wallenbergs Foundation

American Chemical Society Petroleum Research Fund

University of Nebraska Foundation

J. A. Woollam Foundation

Nebraska Research Initiative

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3