Thermal effects on the performance of a nanosecond dielectric barrier discharge plasma actuator at low air pressure

Author:

Chen Zongnan1ORCID,Wong Chung Chu2ORCID,Wen Chih-Yung2ORCID

Affiliation:

1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

2. Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

The thermal effects of a pulsed nanosecond dielectric barrier discharge plasma actuator (NSDBD) with varying pulse voltages and pulse repetitive frequencies under different air pressures ranging from 0.1 to 1 bar are studied experimentally. By observing discharge features with a charge-coupled device camera, the transition from a filamentary discharge mode to a diffuse mode with decreasing air pressure is described. The filamentary streamers extend along the radius direction, forming a thicker yet more stable and uniform plasma region due to the increasing ionized volume yielded by the decreasing air pressure to maintain the high values of the reduced electric field. The spatiotemporal temperature distribution on the surface is captured by an infrared camera, indicating that the heated surface can be divided into three typical regions with different features. Because gas heating is generated in the quenching process of excited molecules, the maximum temperature increase on the surface occurs in the plasma region and attenuates downstream. The surface temperature increase is primarily caused by heat convection from the residual heat in plasma and the heat generated by the dielectric losses. The results of heat flux on the surface suggest that the rising applied voltage may not increase the heat flux in a moderate air pressure ranging from 0.6 to 0.8 bar. Different discharge modes and discharge parameters exhibit markedly different thermal performances. Also, the Schlieren technique and the pressure sensor are used to visualize the induced shock wave, estimate the thermal expansion region, and measure the overpressure strength. The results of the overpressure strength at different air pressures are similar to the thermal features, which highlights the strong influence of the discharge mode on the thermal effect of NSDBD plasma actuators.

Funder

HK general research fund

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3