Characterization of heated volume generation by nanosecond pulsed plasma actuator with various pressure environments

Author:

Matsunaga Tomohiro,Iwamoto Masaaki,Miki Yuma,Kinefuchi KiyoshiORCID

Abstract

Abstract Nanosecond dielectric barrier discharge (NS-DBD) has emerged as a promising technique for controlling high-speed flows, generating a heated volume that generates strong density and viscosity gradients, thereby perturbing flow dynamics. Since its potential application in low-pressure, high-speed flows, understanding how the size and growth of the heated volume correlate with surrounding pressure is crucial. In this study, we employed typical schlieren and background-oriented schlieren (BOS) techniques to investigate the heated volume’s sensitivity to surrounding pressure in quiescent air. The observed heated volume’s size variations with surrounding pressure likely stemmed from the increase in thermal diffusivity at lower pressures. BOS findings unveiled a nearly linear decrease in heated volume’s core density with energy input. Meanwhile, the heated volume’s size augmented with energy input but exhibited gradual saturation, attributable possibly to shear stresses impeding volume expansion as temperature and viscosity rose, or to consumption of energy in vibration excitation and other reactions. In the cases of 100 and 50 kPa, the sensitivity of the heated volume’s size to the reduced electric field appeared to be similar. However, at 10 kPa, where the reduced electric field is higher compared to that of the 100 and 50 kPa cases due to the lower air density, the size sensitivity drastically decreased. This suggested a transition in discharge mode from filamentary to diffusive behavior at lower pressures.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3