Hyperdoping of germanium with argon toward strain-doping-induced indirect-to-direct bandgap transition in Ge

Author:

He Li1ORCID,Wen Shu-Yu12ORCID,Zhu Yuan-Hao12ORCID,Wu Shao-Teng1ORCID,Luo Jun-Wei12ORCID

Affiliation:

1. State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Science 1 , Beijing 100083, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences 2 , Beijing 100049, China

Abstract

The first-principles calculations have recently shown that implanting sufficient noble gas atoms into germanium (Ge) can expand its lattice to achieve the desired tensile strain for indirect-to-direct bandgap transition to develop the on-chip high-efficient light emitter. Here, to experimentally prove this strain-doping concept, we implant argon (Ar) ions into Ge and then recrystallize the Ar-doped amorphous Ge (a-Ge) layer using nanosecond laser annealing (NLA) and furnace thermal annealing (FTA), respectively. The NLA effectively recrystallizes the 12 nm thick a-Ge layer with minimal loss of Ar dopants, while FTA fails to fully recrystallize it and results in significant loss of Ar dopants. The regrown Ge layer with Ar concentration above the critical value (0.8%) for bandgap transition is 3.8 nm thick, making it a challenge to distinguish the photoluminescence signal of strain-doped layer from the substrate. To overcome this, increasing the implantation energy and adding a capping layer may be necessary to further prevent Ar loss and achieve a strain-doped layer with sufficient depth. These findings provide promising view of the strain-doping concept for direct-bandgap emission from Ge.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research Program of Frontier Science, Chinese Academy of Sciences

CAS Project for Young Scientists in Basic Research

the Strategic Priority Research Program of the Chinese Academy of Sciences

Joint Fund of Henan Province Science and Technology Research and Development Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3